Torii-HLMAC: Torii-HLMAC:
Fat Tree Data Center Architecture

Elisa Rojas
elisa.rojas@uah.es
University of Alcalá
(Spain)
Outline

- Introduction
- Protocol description
 - Tree-based Multiple Addresses structure and automatic assignment with Extended RSTP
 - Tree-based forwarding
 - Tree-based path repair
- Evaluation
 - Simulation of Torii-HLMAC
 - Other issues:
 - Use of Virtual Machines at hosts, HLMAC Address Assignment Alternatives, Inter-L2 Mobility, Generalization to any data center topology
- Conclusions
Introduction

- **Data center** networks are increasingly relying on **Ethernet** and flat layer two networks
 - Due to its excellent price, performance ratio and configuration convenience

- **Scale-out** model over **scale-up** model
 - High scale dimensions → Limitations of RSTP

- Recent architecture proposals:
 - **VL2**
 - **PortLand**
 - **DAC**
 - Blueprint
So… if we have the advantages of using this type of topology…

…why not make the most of it and consider it as an **specific topology** to enhance the whole architecture and data center protocol?

➔ Torii-HLMAC
Protocol description

- **Tree-based Multiple Addresses structure and automatic assignment with Extended RSTP**
Protocol description

- Tree-based Multiple Addresses structure and automatic assignment with Extended RSTP
Protocol description

- Tree-based Multiple Addresses structure and automatic assignment with Extended RSTP
Protocol description

- **HLMAC are local MAC (U/L bit=1)**
 - Almost 6 bytes (6bits+5x8bits) → ROOT is 0.0.0.0.0.0

- **Address 1.1.1.1 = 1.1.1.1.0.0, (in fact the first byte will not be 1, since the U/L bit will be set to 1, but it is omitted)**
Protocol description

- **Tree-based forwarding**
 - **Broadcast and Multicast**
Protocol description

- **Tree-based forwarding**
 - **Unicast**
Protocol description

- **Tree-based forwarding**
 - **Unicast**

![Diagram of tree-based forwarding](image)

- Address translation (from PMAC to HLMAC)
- Address translation (from HLMAC to PMAC)
- Table: Translation table at the edge switch (alternative HLMACs assigned to a host)
- Ethernet frame: `dst mac | src mac | data`
Protocol description

- **Tree-based forwarding**
 - **Unicast**

![Diagram of tree-based forwarding]

Address translation (from PMAC to HLMAC)

Address translation (from HLMAC to PMAC)

Table
Translation table – at the edge switch (alternative HLMACs assigned to a host)

Ethernet frame: dst mac | src mac | data
Protocol description

- **Tree-based forwarding**
 - **Unicast**
Protocol description

- **Tree-based forwarding**
 - **Unicast**

![Diagram of tree-based forwarding](image-url)
Protocol description

- Tree-based path repair
 - Broadcast and Multicast
Protocol description

- **Tree-based path repair**
 - *Broadcast and Multicast*

 - *Path repair looks for the first alternative to avoid duplicates*
Protocol description

- **Tree-based path repair**
 - Broadcast and Multicast
Protocol description

- **Tree-based path repair**
 - **Unicast**
Protocol description

- Tree-based path repair
 - Unicast

 No possible duplicates, so next common root switch is chosen ⇒ bidirectional communication
Protocol description

- **Tree-based path repair**
 - Unicast \rightarrow Frame + Destination notification + Source notification
Protocol description

• **Tree-based path repair**
 – *Unicast → Frame + Source notification*
Evaluation

- **Simulation of Torii-HLMAC**
 - **OMNeT++ (v4.1)** → Torii switch
 → C++ implementation over **MACRelayUnit (inet framework)**
 [Extended STP BPDU given as a parameter]
 - **PortLand topology + UDP traffic exchange**
 → Proven forwarding & path repair (different levels of link failure)
Evaluation

- **Use of Virtual Machines at hosts**
 - Data center topologies: physical hosts usually composed by a number of *virtual machines* (VMs) installed
 - Torii only uses the **first 4 bytes** of HLMAC addresses
 - So the **last 2 bytes** could be used to distinguish among those VMs (65535 active VMs), by being assigned in the reception order of their ARP messages.

- **HLMAC Address Assignment Alternatives**
 - In general, the Torii-HLMAC proposal takes 1 byte of the 6 of the HLMAC per hierarchical level, and 2 bytes for the VMs
 - Nevertheless, **fewer bits** could be assigned for this and could be used for some additional functions (i.e. repair), without changing the protocol.
Evaluation

- **Inter-L2 Mobility**
 - Gratuitous ARP propagates the new HLMAC information

- **Generalization to any data center topology**
 - We have just shown our proposal over the PortLand topology, what about different topologies?
 - The generalized PortLand topology will also work for Torii-HLMAC: <= k-port switches can support 100 percent throughput among $k^{3/4}$ servers using $k^{2/4}$ switching elements and the topology should be organized into k pods, each connecting $k^{2/4}$ end hosts >>

 Torii-HLMAC could be used with k up to 16, more than enough.

\[k^{2/4} < 2^6 \implies k^2 < 64 \times 4 = 256 \implies k < 16 \]
Evaluation

- **Generalization to any data center topology**
 - *While keeping the pods, any topology would work.*
 - The use of different topologies will depend on the most desirable feature:
 - less cost using cheap off-the-self components (Clos Network)
 - or less wiring complexity (Fat Tree).
• Torii-HLMAC is a distributed, fault-tolerant, zero configuration fat tree data center architecture

• Forwarding needs no tables
 – The only tables needed are the translations from MAC to HLMAC (and vice versa) of active hosts at the edge switches (table size \(\leq\) active hosts)

• On the fly path repair

• No network manager

• No control messages

• Load balancing initially based on a hash function

• Hosts not affected (no need of any software or change)

• Independent of IP
Conclusions

- **Specific wiring** to be done at the construction of the topology
- Broadcast flooding is not avoided
 - ARP proxy could be used
- Multicast should be improved
 - So that not all the switches are broadcasted
Conclusions

• **Fat trees** are more convenient than **Clos networks** for Torii-HLMAC → **simpler wiring**

• **Deeper analysis** needed:
 – Comparison with other architectures
 – Setup time (Extended RSTP)
 – Broadcast reduction (proxys, host registration at directory, e.g. SEATTLE)
 – Multicast optimization (IGMP snooping, others)
 – Multiple path repair performance
Thank you for your attention!

Any questions?

Elisa Rojas
elisa.rojas@uah.es
University of Alcalá
(Spain)